Some clamification
about the transversality condition
The general transversality condition:

$$
\begin{gathered}
\left(\nabla_{\underline{x}} \phi+\left(\underline{\nabla_{\underline{w}}} \underline{)^{\top}} \underline{v}-\underline{\lambda}\right)^{\top} \mid \underline{x}(T)+\right. \\
\left.\left(\frac{\partial \phi}{\partial t}+\left(\frac{\partial \underline{\psi}}{\partial t}\right)^{\top} \underline{v}+H\right)\right|_{t=T} d T=0
\end{gathered}
$$

where:
$\phi \equiv$ Terminal cost, $\Psi \equiv$ Terminal constraint (Scalar $f \div$), (vector $f \because$)
$\underline{x}(t) \equiv$ state vector, $\lambda(t) \equiv$ costate vector
$\underline{\nu} \equiv$ Lagrange multiplier vector, $H \equiv$ Hamiltonian

- The transversality condition comes from the PMP proof which we will NOT do in class
- The intuitive reason why there is a sum of the form:

$$
\left.(\cdots)\right|_{t=T} d \underline{x}(T)+\left.(\cdots)\right|_{t=T} d T=0 \text {, }
$$

is that the variations $d \underline{x}(T)$ and $d T$ may or may not be independent depending on how you formulate the DeP.

- Serreral cases to consider:

Case I If final time (T) is fixed but final state $x(T)$ is free, then $d T=0$,
but $d \underline{x}(T) \neq 0$
\therefore coesf. of $d \underline{x}(T)=0$.

Care II) If final state $(x(T))$ is fixed but final time (T) is free (e.g. Brachistochrove) them:

$$
\begin{aligned}
& \text { then: } \\
& d \underline{x}(T)=0, d T \neq 0 \Leftrightarrow \text { coesf. of } d T=0
\end{aligned}
$$

Car吕 If BoTH $\underline{x}(T)$ and T are fixed, then $d \underline{x}(T)=d T=0 \Leftrightarrow 0+0=0$
(egg. min. energy (Transvernsality cord n Case TV If BoTHer) gives no extra info) (e.g. minimum time missile intercept), then $d \underline{x}(T) \neq 0, d T \neq 0$.

Now we need to consider 2 sub-cases.
Case TV, A The variations $d x(T)$ and $d T$ are independent
(contd.)

Then, coess. of $d \underline{x}(T)=0\}$
AND coesf. of $d T=0\}$

$$
\left.\left.\Leftrightarrow\left(\nabla_{\underline{x}} \phi+\left(\nabla_{\underline{x}} \underline{\psi}\right)^{\top} \underline{\nu}-\underline{\lambda}\right)\right|_{t=T}=0\right\}
$$

AND $\left.\left.\left(\frac{\partial \phi}{\partial t}+\left(\frac{\partial \varphi}{\partial t}\right)^{\top} \underline{\nu}-H\right)\right|_{t=T}=0\right)$
Notice here that the terminal constraint

$$
\underline{\psi}(\underline{x}(T), T)=0
$$

may involve T. Once $\Psi(x(T), T)$ is modeled, there is NO extra dependence of $d x(T)$ or Troblein This is why in the min. time intercept problein, $d x(T)$ is indef. of $d T$.

Case IV. B $d \underline{x}(T) \neq 0, d T \neq 0$,
Furthermore, $d \underline{x}(T)$ and $d T$ are dependent. e.g. If we demand that $\underline{x(T)}$ reeds to lie on a moving bt. $\underline{\Phi}(t)$, otherwise $\underline{x}(T)$ and T are free
Then $\underline{x}(T)=\underline{p}(T)$

$$
\begin{equation*}
\text { and } d \underline{x}(T)=\frac{d p}{d T}(T) d T \tag{*}
\end{equation*}
$$

Now set $\underline{Y} \equiv \underline{O}$ (zerofunction) in the transuensality condition and substitute (*) for writing $\mathcal{\delta x}(T)$ as function of $d T$:

$$
\left.\left(\nabla_{\underline{x}} \phi-\underline{\lambda}\right)_{t=T}^{T}\right|_{t=T} \frac{d p(T)}{d T} d T+\left.\left(\frac{\partial \phi}{\partial t}+H\right)\right|_{t=0} d T=0
$$

since $d T \neq 0$, the above gives (next pg.)

$$
\left.\left(\nabla_{\underline{x}} \phi-\underline{\lambda}\right)^{\top}\right|_{t=T} \frac{d \underline{p}(T)}{d T}+\left.\left(\frac{\partial \phi}{\partial t}+H\right)\right|_{t=T}=0 .
$$

One may formulate the same OCP in the Care IV.A form, on in the Case IV.B form, depending on how the modeling is done.

