

Equivalence bet forms

$$
\underbrace{\substack{\text { index. of } u(\cdot) \\ u(\cdot)}(x(T), T)}_{\text {Mayer form. }}=\underbrace{=\operatorname{agmin}_{u(\cdot)} \int_{t_{0}}^{t} \frac{\partial \phi}{\frac{\partial t}{\partial t}+\left\langle\nabla_{\underline{x}} \phi, f\right\rangle}}_{\text {Lagrange form }} \underset{L}{ } d t
$$

$$
\begin{aligned}
& \underset{\substack{\text { Mayer }}}{\substack{\text { Logan ane } \\
\text { forme }}} \\
& =\phi\left(t_{0}, x_{0}\right)+\int_{t_{0}}^{t_{f}} \frac{d}{d t} \phi(t, x(t)) d t \\
& =\underbrace{\phi\left(t_{0}, x_{0}\right)}_{\text {inder-of } u(\cdot)}+\int_{t_{0}}^{t_{0}}\left\{\frac{\partial \phi}{\partial t}+\left\langle\nabla_{\underline{x}} \phi, f\right\rangle\right\} d t
\end{aligned}
$$

Lagrange form \longrightarrow Mayer form
Introduce extrastate variable \tilde{x} as

$$
\frac{\dot{x}=L(t, \underline{x}, \underline{u})}{\dot{x}\left(t_{0}\right)=\underset{\text { conbitrary changes the cont cost by }}{\text { cord }}}
$$ an additive constant, does NOT change argmin)

Finst order Necessamy Conditions for Optimality (1958)

Hamiltomian $H(\underline{x}(t), \underline{U}(t), \underline{\lambda}(t), t)$ (sealar)

$$
:=L(\underline{x}(t), \underline{u}(t), t)+\underline{\lambda}^{\top}(t) f(\underline{x}(t), \underline{u}(t), t)
$$

DState eq.

$$
\begin{aligned}
& \frac{\text { DState eq }}{\dot{x}(t)}=\frac{\partial H}{\partial \lambda}=f(\underline{x}, \underline{u}(t), t), \quad \underline{x}(t) \in \mathbb{R}^{n} \\
& \underline{x}(0)=\underline{x}_{0}(\text { given })
\end{aligned}
$$

$$
\dot{\lambda}(t)=-\frac{\partial H}{\partial \underline{x}}, \frac{\lambda}{\sqrt{5}}(t) \in \mathbb{R}^{n}
$$

(time-vanying) Lagnange multipliz-1 we call $\lambda(t)$ as co-state
(3) Pontryagin's Maximum principle (PMP):

$$
\frac{0}{m \times 1}=\frac{\partial H}{\partial \underline{u}}, \quad \underline{u} \in \mathbb{R}^{m}
$$

(4) Transversality Condition:

$$
\begin{aligned}
& \left.\left(\nabla_{\underline{x}} \phi+\left(\nabla_{\underline{x}} \underline{\psi}\right)^{\top} \underline{\nu}-\underline{\lambda}\right)^{T}\right|_{t=t_{f} \equiv T} ^{d} \underbrace{x(T)}_{\text {final state }}+ \\
& \left.\left(\frac{\partial \phi}{\partial t}+\left(\frac{\partial \underline{\psi}}{\partial t}\right)^{\top} \underline{\nu}+H\right)\right|_{t=T} d \prod_{\text {final }}=0
\end{aligned}
$$

$\underline{\nu}$: Lagrange multiplier vector but constant vector

Hamiltonidm H:

$$
\begin{aligned}
& \frac{d}{d t} H(\underline{x}, \underline{u}, \lambda, t) \\
& \left.\overline{\bar{j}} \frac{\partial H}{\partial t}+\left(\nabla_{\underline{x}} H\right)^{\top} \underline{x}\right)+\left(\underline{\nabla_{\underline{u}}} H\right)^{\top} \underline{\dot{u}}+(\underline{\dot{\lambda}})^{\top} f
\end{aligned}
$$

(chair)

$$
=\frac{\partial H}{\partial t}+\underset{\substack{L_{0} \\
\left(\text { from }^{u} M P\right)^{3}}}{\left(\nabla_{u} \nmid 4\right)^{\top}} \underline{\dot{u}}+(\underbrace{\nabla_{x} H+\dot{\lambda}}_{\left(\begin{array}{l}
\overline{\bar{x}} 0 \\
\text { (condition 2) }
\end{array}\right.})^{\top} \underline{f}
$$

$$
=\frac{\partial H}{\partial t}
$$

$\Rightarrow H^{*}$ is constant is the OCP is time-
(ie., neither $f \frac{\text { invariment }}{\text { nor } L \text { depends }}$ explicitly on t)

Proof of (1)-(4): Summany/outline: Book by Liberzon.
Actual proof: Agrachev-Sachkov w we will not prove it
Example 1: (Shortest planar path is straight line, revisted)
(1) State eqnon

$$
\begin{gathered}
\dot{x}=u \\
\dot{y}=v \\
\int_{A}^{B} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
=\sqrt{1+\frac{v^{2}}{u^{2}}} d t
\end{gathered}
$$

2 states, 2 controls

$$
\phi=0
$$

Hamiltonian:
Also $\psi=0$

$$
\begin{align*}
H & =\sqrt{1+\frac{v^{2}}{u^{2}}}+\underline{\lambda}^{\top} \underline{f} \tag{1}\\
& =\sqrt{1+\frac{v^{2}}{u^{2}}}+\lambda_{1}^{(t)} u+\lambda_{2}^{(t)} v
\end{align*}
$$

Apply co-state ear. (condition (2))

$$
\left.\begin{array}{l}
\lambda_{1}^{0}=-\frac{\partial H}{\partial x}=0 \Rightarrow \lambda_{1}(t)=c_{1} \\
\lambda_{2}=-\frac{\partial H}{\partial y}=0 \Rightarrow \lambda_{2}(t)=c_{2}
\end{array}\right\}
$$

Apply PMP (condifion (3))

$$
\left.\begin{array}{l}
0=\frac{\partial H}{\partial u}=\frac{v^{2} / u^{2}}{\sqrt{u^{2}+v^{2}}}+\lambda, \pi C_{1} \\
0=\frac{\partial H}{\partial v}=\frac{v / u}{\sqrt{u^{2}+v^{2}}}+\lambda, 2
\end{array}\right\} C_{2}\left\{\begin{array}{l}
2 \text { ea } u_{s} \\
\text { in } 2
\end{array}\right.
$$

$\therefore u=K_{1}$ (some constant that is nonlinear $f \cong$ of other constants C_{1}, c_{2})
$V=K_{2}$ (another constant depends on C_{1} \& C_{2})
But state eau:

$$
\begin{aligned}
\dot{x}=u=k_{1} \Rightarrow x^{*} & =k_{1} t+\widetilde{k_{1}} \\
\dot{y}=v=k_{2} \Rightarrow v^{*} & =k_{2} t+\widetilde{k_{2}} \\
& \text { Elimininate } t
\end{aligned}
$$

齿
\therefore st. line

$$
\begin{aligned}
\text { is line optimal } & y^{*}
\end{aligned}=l_{1} x^{*}+l_{2}, ~=k_{2} / k,
$$

$\left.\begin{array}{r}\text { Apply }\left(x_{1}, y_{1}\right) \equiv A \\ \left(x_{2}, y_{2}\right) \equiv B\end{array}\right\}$ to determine the constants

$$
\begin{aligned}
H^{*} & =H\left(x^{*}, u^{0}, \lambda^{*}, t\right) \\
& =\sqrt{1+\frac{k_{2}^{2}}{k_{1}^{2}}}+c_{1} k_{1}+c_{2} k_{2}
\end{aligned}
$$

= constant (verified.)
Example 2: (Temperature (θ) control in a rom) Nestor's Law of heating (cooling:

$$
\dot{\theta}=-\alpha\left(\theta-\theta_{a}\right)+\beta u, \quad \alpha, \beta=\text { constants } \quad \theta_{a}=\text { ambient }
$$

Let $x(t):=\theta(t)-\theta_{a}$ \checkmark constant $\theta_{a}=$ ambient temperate. $=$ constant.

$$
\Rightarrow \dot{x}=-\alpha x+\beta u, x(0)=x_{0} \text { known } . u=\text { control }
$$

$$
\begin{aligned}
& H=L+\lambda f \\
&=\frac{1}{2} u^{2}+\lambda(t)(-\alpha x+\beta u) \\
& \dot{x}=\frac{\partial H}{\partial \lambda}=-\alpha x+\beta u \leftarrow \text { state eq-- } \\
& \dot{\lambda}=-\frac{\partial H}{\partial x}=+\alpha \lambda(t) \leftarrow \text { costate ea }-\frac{n}{3} \\
& 0=\frac{\partial H}{\partial u}=u+\lambda(t) \beta \\
& u^{*}(t)=-\beta \lambda(t)
\end{aligned}
$$

For now, let's pretend that $\lambda(T)$ is known
Then $\dot{\lambda}=+\infty \lambda$
\Rightarrow (integrate
bach in + mime)

$$
\text { Then } \begin{aligned}
\dot{x} & =-\alpha x(t)+\beta \cdot u(t) \\
& =-\alpha x(t)+\beta \cdot(-\beta \lambda(t)) \\
& =-\alpha x-\beta^{2} \lambda(t) \\
& =-\alpha x-\beta^{2} e^{-\alpha(T-t)} \lambda(T)
\end{aligned}
$$

$$
\Rightarrow x(t)=x_{0} e^{-\alpha t}-\frac{\beta^{2}}{\alpha}(1(T)) e^{-\alpha T} \sinh (0, t)
$$

Ease (fixed $x(T)$.
Give T is allofixed.

$$
\left.\begin{array}{l}
d x(T)=0 \\
d T=0
\end{array}\right\} x(0)=0
$$

Condition (4) gives us nothing new.
Then the only strategy possible to

$$
\begin{aligned}
& \text { Compute } \lambda(T) \text { is: } \\
& x(t) \left\lvert\,=x(\phi) e^{-\alpha T}-\frac{\beta^{2}}{2 \alpha} \lambda(T)\left\{1-e^{-2 \alpha T\}}\right.\right. \\
& \underbrace{x(T)}_{0} \\
& \left(\begin{array}{l}
\text { given })
\end{array}\right. \\
& \Rightarrow x(T)=f_{n}(x(T), T)
\end{aligned}
$$

\therefore solved.

Case II Free terminal state

$$
x(T)
$$

but we need to but $\phi(x(T), T)$

$$
\begin{aligned}
& \text { but we need to but } \phi(x(T), T) \\
& J_{\text {cost }}=\underbrace{\frac{1}{2} \underset{\sim}{s}(x(T)-10)^{2}}_{\substack{\text { Some } \\
\text { positive }}}+\frac{1}{2} \int_{0}^{T} u^{2} d t
\end{aligned}
$$

Then we need condition (4).

$$
\begin{gathered}
d T=0 \\
d x(T) \neq 0
\end{gathered}
$$

\therefore coff. of $d x(T)$, must be $=0$. That gives $\lambda(T)=s(x(T)-10)$

Example 3:
Thrust angle Programming: Intercepting moving target by a missile

Intercept problem Vs. Rendezvous Problem (Missile problem)
(Moon landing)
$\begin{aligned} & \text { State vector } \\ & \text { of the visible }\end{aligned}(\underline{x})=\left(\begin{array}{c}x \\ y \\ u \\ v\end{array}\right) \in \mathbb{R}^{4}$
$a==\frac{F}{m}(k n o w n$ thrust acid $n)$
Target P has initial pos $s^{n} x_{0}$ (ifmoves@const.altitude h)
control): trust angle $\gamma(t)$.
controlled dynamics (state ODE)
\(\left.$$
\begin{array}{ll}\text { state } & \dot{x}=u \\
\left(\begin{array}{l}x \\
y \\
u \\
v\end{array}
$$\right) \& \dot{y}=v \\
\dot{u}=a \cos \gamma \\

\dot{v}=a \sin \gamma\end{array}\right\}\)| $I \cdot c$, |
| :--- |
| $x(0)=0$ |
| $y(0)=0$ |
| $u(0)=0$ |
| $u(0)=0$. |

