Lecture \#5
The following choice will work:

$$
L=\underbrace{V(\underline{q})}_{\substack{\text { Kinetic } \\ T(i)}} \underbrace{V(}_{\text {Potential }}
$$

energy energy

$$
\frac{1}{2} m\|\dot{q}\|^{2}
$$

$$
=\frac{1}{2} m\langle\underline{q}, \underline{q}\rangle
$$

Cob Problem: $t=t_{f}$

$$
\begin{aligned}
& \text { Cartesian Coordinate: } \\
& T=\frac{1}{2} m\left(\frac{\alpha=(x, y, z)^{r}}{\left.\dot{x}^{2}+\dot{j}^{2}+z^{2}\right)}\right.
\end{aligned}
$$

Cylindrical :

$$
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\dot{z}^{2}\right)
$$

Spherical

$$
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+\right.
$$

$$
\min _{u} I(u)=\int_{t=t_{0}}(t, d, a) d t
$$

$$
\{T(\underline{q})-V(\underline{w})\}
$$

 $\Rightarrow-\frac{\partial v}{\partial q}=\frac{a}{d t}$
$\Rightarrow-\frac{\partial v}{\partial q} \underline{T}=m$ went ion

The identification that $L=T-V$, is called Hamilton's principle of least action

- $L=T-V$, and $T=\frac{1}{2} m\langle\underline{\dot{q}}, \dot{q}\rangle$
- when $V=0, L=T(\dot{\underline{q}})$

$$
\begin{aligned}
& =T(\dot{\underline{q}}) \\
& =\frac{1}{2} m\langle\underline{\dot{q}}, \underline{i}\rangle \quad \text { minimizers }
\end{aligned}
$$

Then CoL problem: $t=t_{f}$

$$
\begin{aligned}
& =\frac{1}{2} m \int_{t=t_{0}}\langle\dot{q}, \dot{q}\rangle d t \\
& d^{2}=(d x)^{2}+(d y)^{2}+(d z)^{2} \Rightarrow d s=\sqrt{d(x)^{2}+(d y)^{2}}\left(x^{2}\right) \\
& =\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\sqrt{(\dot{x})^{2}+(\dot{y})^{2}} d t
\end{aligned}
$$

- If $V \neq 0$, then $\min _{\underline{q}(t)} I(\underline{q})=\int_{t=t_{0}}^{+t_{f}}\left\{T(\dot{q})-V_{(G)}\right\}$ minimizing curves/paths/ trajectories T "tines" are "generalized straight lines" called "geodesics"
w.v.t. metric that defends on potential energy
- Neaton's Law \Leftrightarrow EL equation $V(\underline{q})$. (Pointwise statement) minionizing path (global statement)
-(If) the force field is conservative $\left(F(\underline{a})=\frac{-\partial v}{2 q}\right)$
(then neither T nor V, depends explicitly on t (time)

$$
L(\underline{q}, \dot{q})=T(\underline{q}, \underline{q})-V(\underline{q}, \underline{q})
$$

\therefore we can apply Beltrami identity:

$$
\begin{aligned}
& L-\left\langle\dot{q}, \frac{\partial L}{\partial \dot{q}}\right\rangle=\text { constant } \\
& \Leftrightarrow(\text { its negative }) \\
&\left\langle\underline{q}, \frac{\partial L}{\partial \dot{q}}\right\rangle-L=\text { constant }
\end{aligned}
$$

we call this "Hamiltonian" (H).

Hamilton's canonical equations:
Let $p:=L_{\dot{q}}(t, \underline{q}, \underline{q})$
We can think of the vector p as f^{n}. of t, associated with a giver path/trajectory $q(t)$
we defined: $\underbrace{H(t, \underline{q}}, \dot{q}, \underline{p})=\langle\underline{\dot{q}}, \underline{p}\rangle-L(t, \underline{q}, \underline{q})$
written as a fe of
4 variables but " t " alone when evaluated
becomes a f " of " along a particular trajectory $q(t)$
We call " q " \& " P " as "canonical variables"

- Suppose $\underline{q}(t)$ satisfies EL equation
- De can write ODEs for $q(t) \& p(t)$ along the sol of $E L$ eq u, in terms of H^{n} as: ELea

$$
\frac{d}{d t} \underline{q}=\frac{\partial}{\partial \underline{p}} H(t, \underline{q}(t), \underline{\dot{a}}(t)), \frac{d}{d t} p=\frac{d}{d t} L_{\dot{a}}=L_{q}
$$

\therefore We have the canonical ODEs:

$$
\begin{aligned}
& \frac{d q}{d t}=\frac{\partial}{\partial \underline{p}} H \\
& \frac{d p}{d t}=-\frac{\partial}{\partial q} H
\end{aligned}
$$

T This is simply a reformulation of EL ea n in term of Hamiltomion H (proposed by Hamilton, 1835)

- Mathematically "What is Hamittoniom" ?

Ans. H is the dual/convex conjugate/
Legendre-Fenchel conjugate
of $L(\underline{a}, \underline{q})$ w.r.t. vector \underline{q}
Aside:
convex ronjugate/Legendre - Fenchd conjugate of

$$
\begin{aligned}
& \text { a function } f(\underline{x}) \text { is (where } f: \mathbb{R}^{n} \mapsto \mathbb{R} \text {) } \\
& g(\underline{y})=\sup _{\underline{x} \in \mathbb{R}^{n}}\{\langle\underline{y}, \underline{x}\rangle-f(\underline{x})\} \text {, shorthand: } \\
& H=(L(\underline{q}, \underline{q}))^{*}=\sup _{\dot{q} \in \mathbb{R}^{n}}\{\langle\underline{\varepsilon}, \underline{q}\rangle-L(\underline{q}, \underline{q})\} \\
& \text { So, the } \frac{\text { unconstrained minimizati. }}{\text { un }} \\
& \text { maximizing } \underline{q} \text { solves: } \frac{\partial}{\partial \dot{q}}\{\langle\xi, \underline{q}\rangle-L(\underline{q}, \dot{q})\}=
\end{aligned}
$$

\therefore After the maximization:

$$
\begin{aligned}
\Rightarrow \quad H & =\frac{1}{2} m\langle\underline{\dot{q}}, \dot{q}\rangle-(-V(\underline{q})) \\
& =\frac{\frac{1}{2} m\langle\underline{q}, \underline{q}\rangle}{\frac{{ }^{\prime \prime}}{T}(\underline{q})}+\underbrace{V(\underline{q})} \\
& =\text { Kinetic energy }+\int_{\text {Potential }} \\
& =\text { Total Energy }(E)
\end{aligned}
$$

(If conservative force field, them

$$
\left\{\begin{array}{l}
H=T+V=E=\text { constant } \\
L=T-V \text { (even if non-conservative). }
\end{array}\right.
$$

If not, then $H=E$ mag not hold also, one or none of $H \& E$ may be constant of motion.

Example (EL equation for ball in rotating tube)

position
position
vector

velocity:
$\begin{aligned} & \text { vector } \\ & \text { verity } \\ & \dot{r} \\ & (t)\end{aligned}=\frac{d}{d t} r(t)=\dot{\gamma} \hat{e}_{r}+\underline{\omega} \times \underline{r}$
(Transport theorem $\left\{\left(\Omega \hat{e}_{z}\right) \times\left(\hat{r} \hat{e}_{r}\right)\right\}$
$T(\underline{r})$

$$
\begin{aligned}
& =\frac{1}{2} m\left\langle\frac{1}{2} m\left(\dot{r}^{2}+\Omega^{2} r^{2}\right)=\dot{r} \hat{e_{r}}+r \Omega \hat{e}_{\theta}\right. \\
& =
\end{aligned}
$$

$$
\begin{aligned}
L & =T-V \\
& =\frac{1}{2} m\left(\dot{r}^{2}+\Omega^{2} r^{2}\right)-\left\{\frac{1}{2} k_{1} r^{2}+\frac{1}{4} \Omega^{2} r^{2}\right\} \\
& =\frac{1}{2} m \dot{r}^{2}+\left(\frac{m \Omega^{2}}{2}-\frac{k_{1}}{2}\right) r^{2}-\frac{1}{4} k_{2} r^{4}
\end{aligned}
$$

Now apply EL ea:

$$
\begin{aligned}
& \quad \frac{\partial L}{\partial \underline{q}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \underline{q}}\right) \quad \text { Here } \underline{q}=r \\
& \Rightarrow\left(m \Omega^{2}-k_{1}\right)^{r}=m \ddot{r} \\
& \Leftrightarrow \\
& \Leftrightarrow \\
& m \ddot{r}+\left(k_{1}-m \Omega^{2}\right) r+k_{2} r^{3}=0
\end{aligned}
$$

Now, total energy
$E=T+V=\frac{1}{2} m r^{2}+\frac{k_{c}}{2} r^{2}+\frac{k_{2}}{4} r^{4}$
But $H=\frac{\partial L}{\partial r} r-L=\frac{1}{2} m \dot{r}^{2}+\left(\frac{k_{r}}{2}-\frac{m r^{2}}{2}\right) r^{2}+\frac{k_{r}^{4}}{4}$
clearly, $H \neq E$.
In fact, by direct differentiation,

$$
\begin{aligned}
\frac{d}{d t} H & =r \cdot \underbrace{\left.\frac{n}{r}\right)}_{=0(\text { from ELea }} \\
& =0
\end{aligned}
$$

$\therefore H$ is a constant of motion

$$
\begin{aligned}
\frac{d E}{d t} & =\dot{r}\left\{m \ddot{r}+k_{1} r+k_{2} r^{3}\right\} \\
& =\dot{r} \frac{m \Omega^{2} r=m \Omega^{2} r \dot{r} \neq 0}{}
\end{aligned}
$$

\therefore Energy is not conserved in this system
we mentioned about pointrise equality constraint.
If $M(x, u)=0$ (ire.) no dependence on $0 u)$
then this pointwise equality constraint is called "holonomic constraint" (\Leftrightarrow system is systern is
ovemparancterizel)
can be thought of as constraint
surface ($\underline{x}, u(\underline{x})$)
\Rightarrow Instead of going the Lagrange multiplier route, we can actually make it an unconstrained GoV problem, by eliminating variables.

Example vent pg.

$$
\begin{aligned}
M(x, y) & =x^{2}+y^{2}-l^{2}=0 \\
\Leftrightarrow M(r, \theta) & =r^{2}-l^{2}=0 \\
& \Leftrightarrow r=\ell=\text { constant } \\
& \Leftrightarrow r=0 \text { canavide }
\end{aligned}
$$

Now, Kinetic emengy: lagnange

$$
V_{E L e q N:} L=T-\frac{\partial L}{2 \theta}=\frac{1}{2} m l^{2} L \hat{\theta} \Leftrightarrow-m g l \sin (\theta)=\frac{d}{d t}\left(m l^{2} \theta\right)
$$

$$
\begin{aligned}
& T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
& =\frac{1}{2} m\left(0^{2}+0 r^{2} \dot{\theta}^{2}-r h g l \sin (\theta)\right. \\
& =\frac{1}{2} m l^{2} \dot{\theta}^{2} \\
& V=m g l(1-\cos \theta) \\
& L_{E L}=T-V=\frac{1}{2} m l^{2} \hat{\theta}^{2}+m g l(\cos \theta-1)
\end{aligned}
$$

From COV to $O C P$
(optional control Problem):
Template:
$u() \in U\left(\left[t_{0}, t_{f}\right]\right)$ terminal cost
s.t. Controlled dynamics
(1) $\frac{\dot{x}}{n \times 1}=f_{n \times 1}(\underline{x}, \underline{u}, t), \frac{x(0)=x_{0}}{\left(g v_{0}\right.}$ Condition)
(2) $\left.\Psi\left(\underline{x}\left(t_{t}\right), t_{1}\right)=0\right\}$ Terminal constraint

 Final time t_{f} may be "free or "fixed"

