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There are two constants of integration (K±) because the solution is given as the union
of two functions, x = g±(z), one for each side of x = 0. Applying cosh to both sides
leaves

f = C cosh
( x

C
± K±

)
.

Here we have made use of the hyperbolic cosine (defined using the exponential function
as cosh x = 1

2(ex + e−x)) and its inverse arccosh. Since we want these two functions
to agree for x = 0, we define K+ = −K− = K. It is a good exercise to verify that the
derivative of arccosh x is 1/

√
x2− 1, and in doing so justify the above integration.

Since f(−a) = f(a) = R, we must have that
{

K = 0,

C cosh( a
C ) = R.

The second equation fixes C, but only implicitly.
The curve y = C cosh

(
x
C + K

)
is called a catenary, and the surface obtained by

rotating its graph about the x axis is called the catenoid. (See Figure 14.10.) We will
discuss it in further detail later.

Fig. 14.10. Two points of view of the elastic sheet joining two rings with equal diameter.

It is rare in mathematics that solutions to analytic problems can be constructed and
verified, at least approximately, with a toy. As discussed in the introduction to this
section, some flexible wire and soapy water is all that is needed to do exactly that for
this particular problem. Experimentation also allows us to explore the limitations of
calculus of variations, some of which were mentioned in Section 14.2 (see the discussion
regarding the optimal column). We encourage the reader to find a “good” recipe for
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Notice that the gradient of the functional
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Examine :
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EL eat with additional Integral Equality Const - aint
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CoV example: Isoperimetric problem
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Newtonian Mechanics & Principle of Least Action
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