Example
Minimal Surface Problem
(Shape of co-axial Soap Film)

2 Minimum energy configuration:

$$
\begin{aligned}
& \text { Area of revolution }
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1} x_{x_{1}} \frac{y d s}{}=\sigma \int_{x_{1}} \sqrt{ } \sqrt{1\left(x^{2}\right)^{2}}
\end{aligned}
$$

$$
4
$$

\therefore Cov problern: $\operatorname{mix}_{u \in C^{1}(\Omega)}^{x_{x_{1}}} u_{1} \sqrt{1+(u)^{2}} d x$

$$
\text { s.t. } u\left(x_{1}\right)=y_{1}, u\left(x_{2}\right)=y_{2}
$$

Since Lagrangian $L=u \sqrt{1+\left(u^{\prime}\right)^{2}}$ is indep.
\therefore Beltrami identity:

$$
\begin{aligned}
& L-u^{\prime} \frac{\partial L}{\partial u^{\prime}}=c^{\sim} \text { constant } \\
& \Rightarrow u \sqrt{1+\left(u^{\prime}\right)^{2}}-u^{\prime} \cdot \frac{u \cdot 2 u^{\prime}}{\chi x \sqrt{1+\left(u^{\prime}\right)^{2}}}=c
\end{aligned}
$$

$$
\begin{aligned}
& \left.\Rightarrow \quad \frac{u}{\sqrt{1+\left(u^{\prime}\right)^{2}}}=c \quad \begin{array}{l}
\text { subestitute : } \\
u=c \cosh (z)
\end{array}\right\} \sinh (z) \frac{d z}{d x} \\
& \left.\Rightarrow \frac{d u}{d x}=\sqrt{\frac{u^{2}}{c^{2}}-1}\right\} \Leftrightarrow \begin{array}{l}
u=c \cosh (z) \\
\Rightarrow z=\cosh ^{-1}\left(\frac{u}{c}\right) \\
d u=\sinh ((2)) .
\end{array} \\
& \left\{\begin{array}{l}
\Leftrightarrow z=\cosh ^{-1}\left(\frac{u}{c}\right) \\
\therefore \frac{d u}{d x}=\sinh (z) \frac{d z}{d x}
\end{array}\right\} \Rightarrow z=\frac{x}{e}
\end{aligned}
$$

$$
\Rightarrow \underbrace{v(x)=c \cosh \left(\frac{x}{c}\right)}_{\text {Catenary (curve) }}\left\{\begin{array}{l}
\text { surface of revolution is } \\
\text { called "Catenoid". }
\end{array}\right.
$$

BC.

$$
\left.\begin{array}{l}
y_{1}=u\left(x_{1}\right)=c \cosh \left(\frac{x_{1}}{e}\right) \\
y_{2}=u\left(x_{2}\right)=c \cosh \left(\frac{x_{2}}{e}\right)
\end{array}\right\}
$$

Given $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$, does there exist a "e" that solve both these equations? Answer requires numerical simulation.
Slightly tractable:

$$
\begin{array}{ll}
w \cdot l \cdot 0 \cdot g \cdot & x_{1}=-L, \quad x_{2}=+L \\
& y_{1}=y_{2}=r
\end{array}
$$

Then, we need to solve:

$$
\Leftrightarrow \frac{\frac{r}{c}=\cosh \left(\frac{L}{e}\right),}{k r=\cosh (k L) \text { where } k:=1 / c . ~}
$$

Given $r, L\rangle$ solve for K
There could be $0,1,2$ roots.
Can show that this ea n may have 2 roots satisfying the bound: k_{1}, k_{2}

$$
\frac{1}{r} \leqslant k_{1}<k^{*}<k_{2} \leqslant \frac{2 r}{L^{2}}
$$

where $k^{*}:=\frac{1}{L} \sinh ^{-1}(r / L)$
If $\cosh \left(k^{*} L\right)=k^{*} r$ them $k_{s}=k_{2}=k^{*}$ (unique so ${ }^{n}$) If $\cosh \left(k^{*}\right)<k^{*} r$ then 2 sorts satisfying the bound

If $\cosh \left(K^{*} L\right)>K^{*} r$ them no so r^{*}
End of example
Interpretation of EL eq as Gradient Descant OPT problem: $\min _{x \in \mathbb{R}^{n}} u(\underline{x})$,

$$
\nabla_{\underline{x}} u=0
$$

Co: Interpret $\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial \nabla u}\right)=0$

$$
\text { as } \underbrace{\nabla}_{2 ?} I(u)=0
$$

Note that in finite dim. OPT, $u: \mathbb{R}^{n} \mapsto \mathbb{R}$

$$
\nabla u=\left(u_{x_{1}}(\underline{x}), \cdots, u_{x_{n}}(\underline{x})\right)
$$

By chain vale,

$$
\begin{array}{r}
\left.\frac{d}{d \epsilon} \right\rvert\, u(\underline{x}+\epsilon \underline{v})=\langle\nabla u, \underline{v}\rangle \\
\forall \underline{v} \text { in } \mathbb{R}
\end{array}
$$

\therefore Inver product $\epsilon=0$ defines $\begin{aligned} & \forall v \\ & v \\ & \text { in } \\ & R^{n}\end{aligned}$
$\therefore w=\nabla u(\underline{x})$ is the unique vector satisfying $\left.\frac{d}{d \epsilon} \right\rvert\, u(\underline{x}+\epsilon \underline{v})=\langle\underline{w}, \underline{v}\rangle$

$$
\begin{array}{ll}
\epsilon \\
\epsilon=0 & \forall \underline{v} \text { in } \mathbb{R}^{n} .
\end{array}
$$

In the EL proof, we showed that

$$
\frac{d}{d \epsilon} \left\lvert\, I(u+\epsilon \phi)=\left\langle\frac{\partial L}{\partial u}-\nabla \cdot \frac{\partial L}{\partial \nabla u}, \phi\right\rangle\right.
$$

(ie.) L^{2} inner product plays the role of vectorial dot product in finite dim. If we define $\nabla I(u):=\frac{\partial L}{\partial u}-\nabla \cdot \frac{\partial L}{\partial \nabla u}$ then $\quad \frac{d}{d \epsilon} E_{=0} \sum_{0}(u+\epsilon \phi)=\langle\nabla I(u), \phi\rangle_{L^{2}(s)}$

Notice that the gradient of the functional $I(u)$ depends on the choice of $\frac{\text { inner }}{\text { product }}$.
Implication:
Numenial
simulation of this $^{*} \begin{cases}\frac{\partial u}{\partial t}=-\nabla_{u} I(u) & \text { for }(\underline{x}, t) \in \Omega \times(0,0) \\ u(x, 0)=u_{0}(x) & \text { for }(\underline{x}, t) \in \Omega \times\{0\}\end{cases}$ is gradient
desc cent
Stationary $p^{k} \frac{\partial u}{\partial t}=0$ is the critical pt. for EL eq u
Claim: To see gradient descent decreases
I, suppose $u(x, t)$ solves (*)

$$
\frac{d}{d t} I(u)=\int_{\Omega} \frac{d}{d t} L(x, u, \nabla u) d x
$$

$$
\begin{aligned}
& =\int_{\Omega}\{\frac{\partial L}{\partial u} \frac{\partial u}{\partial t}+\underbrace{\frac{\partial L}{\partial u u} \frac{\partial \nabla u}{\partial t}}_{\text {Iategration uy pants }} d x \text { (ehairnules } \\
& =\int_{\Omega}\left\{\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial \nabla u}\right)\right\} \frac{\partial u}{\partial t} d x \\
& =\left\langle\nabla I(u), \frac{\partial u}{\frac{\partial t}{\| t}}\right\rangle_{L^{2}(\Omega)} \\
& =\langle\nabla I(u),-\nabla I(u)\rangle_{L^{2}}(\Omega) \\
& =-\|\nabla I(u)\|_{L^{2}(\Omega)}^{2}
\end{aligned}
$$

≤ 0 : Gradient descent PDE is

$$
\frac{\partial u}{\partial t}+\frac{\partial L}{\partial u}-\nabla \cdot\left(\frac{\partial L}{\partial u v}\right)=0, u(x, 0)
$$

Example:

$$
L=\frac{y_{2}}{2}\|\nabla u\|_{2}^{2}
$$

ELeqㄷ: $\Delta u=0\}$ Laplace ea a^{2}
Gradient descent PDE: $\frac{\partial u}{\partial t}+\Delta u=0$ heat ea:
Similamly if $L=1 / 2\|\nabla u\|^{2}-f(x) u$

$$
\text { EL ea n: } \Delta u=-f \quad\left(\begin{array}{c}
\text { Linear Poisson } \\
\text { eat }
\end{array}\right.
$$

Gradient descent PDE: $\frac{\partial u}{\partial t}-\Delta u=f$
\therefore Heat ear is gradient descent of Dirichlet Energy w.r.t. L^{2} inner product distance

ELea with additional Integral Equality Constrain

$$
\begin{aligned}
& \min I(u)=\int_{\Omega} L(\underline{x}, u, \nabla u) d \underline{x} \\
& u \in C^{\prime}(\Omega) \\
& \text { s.t. } \int_{\Omega} M(\underline{x}, u, \nabla u) d \underline{x}=\underline{K} \\
& \text { element-wise integration }
\end{aligned}
$$

EL eque: Consider Augmented Lagrangian:

$$
\begin{aligned}
& L+\left\langle\frac{\lambda}{4}, M\right\rangle=L+\lambda^{\top} M \\
& \frac{\lambda}{q} \text { is constant vector } \\
& \text { for integral eavalit, } \\
& \text { ty constraint }
\end{aligned}
$$

\therefore ELean :

$$
\frac{\partial}{\partial u}\left(L+\underline{\lambda}^{\top} \underline{M}\right)-\nabla \cdot \frac{\partial\left(L+\lambda^{\top} M\right)=0}{\partial \nabla u}=0
$$

$\frac{\lambda}{L}$: "Lagnange Maltiplien
Example (Dido/ Isoperimetric Problem)

$$
\begin{aligned}
& \underset{u(.) \in C^{\prime}(\Omega)}{\operatorname{maximize}} I(u)=\int_{-a}^{+a} u(x) d x, \quad 0<2 a<l \\
& \text { s.t. } \int_{-a}^{+a} \sqrt{1+\left(u^{\prime}\right)^{2}} d x=l \text { (givex) } \\
& \text { B.C. } u(-a)=u(+a)=0 \\
& L=-u \\
& M=\sqrt{1+(\mu r)^{2}} d x
\end{aligned}
$$

CoV example: Isoperimetric problem

ELean.

$$
\begin{aligned}
& \frac{E L e a^{n}}{} \frac{\partial}{\partial u}(L+\lambda M)-\frac{d}{d x} \frac{\partial}{\partial u^{\prime}}(L+\lambda M)=0 \\
& \Rightarrow-1-\lambda \frac{d}{d x}\left\{\frac{2 u^{\prime}}{2 \sqrt{1+\left(u^{\prime}\right)^{2}}}\right\}=0 \\
& \Rightarrow 1+\frac{\lambda u^{\prime \prime}}{\left[1+\left(u^{\prime}\right)^{2}\right]^{3 / 2}}=0
\end{aligned}
$$

Set $u^{\prime}=\tan \theta \Rightarrow u^{\prime \prime}=\sec ^{2} \theta \frac{d \theta}{d x}$ (by chain
\therefore EL eq ${ }^{n}$ becones:

$$
\begin{aligned}
& 1+\lambda \cos \theta \frac{d \theta}{d x}=0 \\
& \Rightarrow d x=-\lambda \cos \theta d \theta \Rightarrow x=-\lambda \sin \theta+c_{1}
\end{aligned}
$$ coust.

Now use the integral Constraint:

$$
\begin{aligned}
& l=\int_{x}^{x}=\int_{-a}^{a} \sqrt{1+\left(u^{\prime}\right)^{2}} d x \\
&=\int_{\theta}=-\arcsin (a / \lambda) \\
& \operatorname{secsin}(\theta)(-\lambda / \lambda) \\
&=2 \lambda \arcsin (a / \lambda)
\end{aligned}
$$

$\therefore \lambda$ solves trameendental eq. $\sin \left(\frac{l}{2 \lambda}\right)=\frac{a}{\lambda}$.
On the other hand,

$$
\begin{aligned}
& \Rightarrow y=u(x)=\lambda \cos \theta+c_{2} \\
& \Rightarrow\left(c_{1}-x\right)^{2}+\left(y-c_{2}\right)^{2}=\lambda^{2}(\text { cont. } \\
& \text { anear }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { To determine } c_{1}, c_{2} \text {, wee B. C. } \\
0=u(-a) \Leftrightarrow\left(c_{1}+a\right)^{2}+c_{2}^{2}=\lambda^{2} \\
0=u(+a) \Leftrightarrow\left(c_{1}-a\right)^{2}+c_{2}^{2}=\lambda^{2}
\end{array}\right\} \begin{aligned}
& \text { solve for } c_{1}, c_{2} \\
& c_{1}=0 \\
& c_{2}=\sqrt{\lambda^{2}-a^{2}}
\end{aligned}
$$

circular are shape is optional
If we have Pointwise $\frac{\text { equality constraint: }}{\text { (not integral equality constrioit) }}$
Then

$$
\begin{aligned}
\min _{u \in C^{\prime}(\Omega)}^{\text {Then }} I(u) & =\int_{\Omega} L(\underline{x}, u, \nabla u) d x \\
& \text { s.t. } M(\underline{x}, u, \nabla u)=\underline{0} \forall \underline{x} \in \Omega
\end{aligned}
$$

Angmented Lagrangian (in this care):

$$
\begin{aligned}
& L+\langle\lambda(z) M\rangle=L+\lambda(x) M(x) u, \nabla u) \\
& \text { orly } E L \text { on this augmented teraguangion } \underset{i}{T} \text { depends on } \underline{x}
\end{aligned}
$$

Mult:-degree of freedom $\cong L e a^{M}:$
(dof)
Consider when u is a vector function (i.e.) $u \in \mathbb{R}^{n}$, but x is scalar (later," "time")

$$
L\left(x, u, \frac{u^{\prime}}{x}\right)
$$

This means
Multi-dof of vector $\underline{u}(x)$ is a curve or ELea"

$$
\rightarrow L_{u_{i}}=\frac{d}{d x} L_{u_{i}^{\prime}}
$$

- system of ODES ($n \times 1$ vector $O D E$)

Nealtonian Mecharies \& Principle of Leasf Action

