Lecture \# 13
Bang-bang for general LTI. condifion for fearibility

$\overrightarrow{\text { Reach }}\left(x_{0}\right)$
$\underline{\underline{\lambda} P} \quad \underline{\lambda}^{\top} B \underline{\underline{u}}=\sum_{i=1}^{m}\langle\underline{\underline{\lambda}(t), \underline{\underline{(}})}\rangle u_{i}$
(forwand reakk set)
(Less restrictive idition than coutrollability)

Since each u_{i} can be chosen indep.ly:

$$
\left.\begin{array}{rl}
\therefore \quad u_{i}^{*}(t) & =-\operatorname{sgn}(\langle\underline{\lambda}(t), \underline{b} i\rangle) \\
& = \begin{cases}+1 & \text { if }\left\langle\underline{\lambda}(t), \underline{b_{i}}\right\rangle<0 \\
-1 & \text { if } \left.\left\langle\underline{\lambda}(t), \underline{b_{i}}\right\rangle\right\rangle 0 \\
? ? & \text { if }\left\langle\underline{\lambda}(t), \underline{b}_{i}\right\rangle=0\end{cases} \\
& \quad \begin{array}{l}
\text { (indeterminate) }
\end{array} \\
& \text { (singular control" } \\
& \text { (corresponding part of state trajectory } \\
\text { is called a singular arc" }
\end{array}\right)
$$

If "singular control" can be ruled out, we say flee OCP is "normal" (otherwise the OCP is "abnormal")

From costate ODE:

$$
\begin{aligned}
& \underline{\lambda}(t)=\exp \left(A^{\top}(T-t)\right) \lambda(T) \\
\Rightarrow & \left\langle\underline{\lambda}(t), \underline{b}_{i}\right\rangle=\left\langle\underline{\lambda}(T), \exp (A(T-t)) \underline{b}_{i}\right\rangle
\end{aligned}
$$

(Take inner product with
$\underline{b}_{i}, i=1, \ldots, m$)

Real andytic function of t,
\therefore Can only have finitely many zeros in any subinterval of $[0, T]$
\Rightarrow Finitely many switching (If a neal analytic f^{n} is zero then all its demivatives are also identically zero).

The following result was proved by Portryagi et.al. (1962)

- An LTI system is normal \Leftrightarrow no singular control) if
$\operatorname{rank}\left[\underline{b}_{i}\left|A \underline{b}_{i}\right| \ldots \mid A^{n-1} \underline{b}_{i}\right]=n$

$$
\forall i=1, \ldots, m
$$

where $\underline{b}_{i}:=i^{\text {th }}$ column of B matrix
$\Leftrightarrow\left(A, \underline{b}_{i}\right)$ is controllable for all $i=1, \ldots, m$ (More restrictive than (A, B) controllable).

Corollary: If (A, B) is normal
$\left(\Leftrightarrow\left(A, \underline{b}_{i}\right)\right.$ controllable $\left.\forall i=1, \ldots, m\right)$ then
$u^{*}(t)$ is bang-bang.
Bang - off -Bang
Dead-zone - function

ω over finite time sub-interval, then sub-interval, sormal ${ }^{-1} \Leftrightarrow \underset{\text { control }}{\text { Singular }}$

Example: Double integrator (with Bang-Off-Bang)

$$
\begin{aligned}
& \ddot{x}=u \Leftrightarrow \begin{array}{l|l|l}
\dot{x}_{1}=x_{2} & \min \\
\dot{x}_{2}=u & u(\cdot) & \int_{0}^{\top}|u(t)| d t \quad|u| \leq+1
\end{array} \\
& \left(x_{1}(0), x_{2}(0)\right)=\left(x_{0}, y_{0}\right) \text { (given } T \text { is fixed } \\
& \left(x_{1}(T), x_{2}(T)\right)=(0,0) \text { fixed (TF } T \text { is free, them in gevend } \\
& \underline{\psi}=\binom{x_{1}(T)}{x_{2}(T)}=\binom{0}{0} \\
& H=1 \widehat{u_{1}}+\lambda_{1} x_{2}+\lambda_{2}^{(t) u} \\
& \left.\lambda_{1}^{0}=0\right\} \lambda_{1}=\text { cost. } \\
& \left.\begin{array}{l}
\lambda_{2}^{e}=-\lambda_{1}
\end{array}\right\} \begin{array}{l}
\lambda_{1}(t)=\lambda_{2}(T)+(T-t) \lambda_{1} \\
\text { linear in " } t \text { " }
\end{array}
\end{aligned}
$$

PMP: for H to be minimum:

$$
u^{*}(t)=\left\{\begin{array}{l}
+1 \text { if } \lambda_{2}(t)<-1 \\
0 \leq 1 \text { if } \lambda_{2}(t)=-1 \\
0 \text { if }-1<\lambda_{2}(t)<+1 \\
-1 \leq \leq 0 \text { if } \lambda_{2}(t)=+1 \\
\begin{array}{l}
-1 \text { if } \lambda_{2}(t)>1 \\
\text { contarbis }
\end{array}
\end{array}\right.
$$

Since $\lambda_{2}(t)$ is a linear f^{n} of t, $\therefore u^{*}= \pm 1$ cannot switch to $u^{*}=\mp 1$ without passing through the intermediate value $u^{*}=0$. \Leftrightarrow at most 2 switching.

Recall,

$$
\left.T_{\min }=y_{0}+\sqrt{4 x_{0}+2 y_{0}^{2}}\right\} \text { check this }
$$

min. time
double integrator
bang - bang
Suppose now, the fixed Tin our problem $\min _{u(\rightarrow)} \int_{0}^{T}|u| d t, T$ fixed, satisfies

$$
T>T_{\text {min }}=y_{0}+\sqrt{4 x_{0}+2 y_{0}^{2}}
$$

(We will see that $T>T_{\text {min }}$ is a necessary condition for existence of u^{*} in Bang-off-Bang problem for double integrator)

Since $\lambda_{2}^{*}(t)$ is linear in t, the efefore, the optinal control $u^{*}(t) \in\{-1,0,+1\}$ given by

$$
u^{*}=\left\{\begin{array}{cll}
-1 & \text { if } & 0 \leqslant t<t_{1} \\
0 & \text { if } & t_{1} \leqslant t<t_{2} \\
+1 & \text { if } & t_{2} \leq t \leq T
\end{array}\right.
$$

where the switching fimes t_{1}, t_{2} are to be determined.
Recall that.
terminal state $\underline{x}(T)=\binom{x_{1}(T)}{x_{2}(T)}=\binom{0}{0}$.
wen $u^{n}=-1$, then

$$
\left.\left.\begin{array}{l}
e_{n} u^{m}=-1, \text { then } \\
x_{1}=x_{2} \\
\dot{x}_{2}=-1
\end{array}\right\} \Leftrightarrow \begin{array}{l}
x_{1}\left(t_{1}\right)=x_{0}+y_{0} t_{1}-t_{1}^{2} / 2 \\
x_{2}\left(t_{1}\right)=y_{0}-t_{1}
\end{array}\right\} \text { integnate }
$$

Simicanly, $u^{*}=0$, then … $\}$ Finally impose

Show that: (eliminate t_{2})

$$
t_{1}^{2}-\left(y_{0}+T\right) t_{1}+\left(x_{0}+y_{0} T+\frac{y_{0}^{2}}{2}\right)=0
$$

This gives:

$$
\begin{aligned}
t_{1} & =\frac{\left(y_{0}+T\right) \pm \sqrt{\left(y_{0}+T\right)^{2}-4\left(x_{0}+y_{0} T+\frac{y_{0}^{2}}{2}\right)}}{2} \\
& =\frac{\left(y_{0}+T\right) \pm \sqrt{\left(y_{0}-T\right)^{2}-\left(4 x_{0}+2 y_{0}^{2}\right)}}{2}
\end{aligned}
$$

Since $t_{1}<t_{2}$, this numbers:

$$
\begin{aligned}
& t_{1}=\text { RHS with }(-) \text { sign } \\
& t_{2}=\text { RHS with }(t) \text { sign. }
\end{aligned}
$$

Soft is admissible if stuff under $\sqrt{i-}>0$ $T>T_{\text {min }}$

F7 Inequality on f^{n} of state \& control:

$$
\begin{aligned}
& (C(\underline{x}, \underline{u}, t) \leqslant 0 \\
& H=L+\lambda^{\top} \underline{f}+\mu c \\
& \mu=\{>0 \text { for } c=0 \\
& \underline{\lambda}=-\frac{\partial H}{\partial \underline{x}}=\left\{\begin{array}{l}
\frac{-\partial L}{\partial \underline{x}}-\lambda^{\top} \frac{\partial f}{\partial x}-\mu \frac{\partial C}{\partial x}, c=0 \\
-\frac{\partial L}{\partial x}-\lambda^{\top} \frac{\partial f}{\partial x}, c<0
\end{array}\right.
\end{aligned}
$$

PMS $\cdot 0=\frac{\partial H}{\partial \underline{u}}=L_{u}+\lambda^{\top} \underline{f}_{u}+\mu C_{u}=0$. If $c<0$, then $\mu=0$, \& PMP determines $u^{x}(t)$. If $C=0$, use $P M P$ together with the constraint itself $C=0$, to solve for $u(t) \& \mu$.
(<compat>8) Pane state inequality constraints: [This is from

$$
S(\underline{x}, t) \leq 0 \ldots\left(*_{1}\right) \text { Bryson \& Ho's Book] }
$$

(for simplicity, assume both S and u as scalars)
The idea is to take successive time derivatives of S (perhaps up to "qith order) until " k " appears explicitls. If indeed " q " time-demivatives are required, then we say that (*) is a $a^{\text {th }}$ order state inequality constraint.

Now define the Hamiltonian as:

$$
H=L+\underline{\lambda}^{\top} \underline{f}+\mu S^{(q)}
$$

where $S^{(a)}=0$ on the constraint boundary $(S=0)$
$\mu=0$ off the

$$
(s<0)
$$

Necessary condition for $\mu(t)$ is:

$$
\mu(t) \geqslant 0 \text { on } S=0
$$

Since control of $S(x, t)$ is obtained by changing its $q^{\text {th }}$ time derivative, no finite control will keep the system on the constraint boundary if the path entering the constraint boundary does not meet the following "tangency" constraints:

$$
N(\underline{x}, t):=\left(\begin{array}{c}
S(\underline{x}, t) \\
s^{(1)}(\underline{x}, t) \\
\vdots \\
s^{(q-1)}(\underline{x}, t)
\end{array}\right)=\underline{0}_{q \times 1} \ldots(* *)
$$

These same tangency constraints apply to the path leaving the constraint bound any.
The ears (**) form a set of interior boundary conditions as in \#5. Consequently, the costates $\lambda(t)$ are, in general, discontinuous at junction points between constrained and unconstrained arcs.

One can set the λ 's and H as discontinuom at the entry point $t=t_{1}$, and continuous at the exit point, woloo.g.
The "entry" \& "exif" points may or may not be "corners", il., places where the control vector is discontinuous.
Bryson-Denham Problem
(URL sent)
Most practical state inequality constrained problems are solved numerically, via Direct OCP solvers such as ICLOCS.

