Lecture \#10
Infinite horizon LQR

$$
\begin{aligned}
& \text { Continuous Time } \\
& \hline-P^{\prime}=A^{\top} P+P A-P B R^{-1} B^{\top} P+Q \\
& \text { Allow } T \rightarrow \infty, \phi \equiv O \Leftrightarrow M=0 \\
& \dot{P} \equiv 0 \\
& \text { CARE (Continuonstime Algebraic } \\
& O=A^{\top} P_{\infty}+P_{\infty} A-P_{\infty} B R^{-1} B^{\top} P_{\infty}+Q
\end{aligned}
$$

Only make sense for LTI

Proposition(Ci) (Existence, uniqueness)
Let (A, B) be a controllable (actually, just need stabikzalle) pair. Then $3!P_{\infty} \geqslant 0$ that solves CARE.

Discrete Tine

$$
P_{k}=Q+A^{\top} P_{k+1}^{1 / 2}\left(I+P_{k+1}^{1 / 2} B R^{-1} B^{\top} P_{k+1}^{1 / 2}\right)^{-1 / 2 / 2} A
$$

Allow, $N \rightarrow \infty, P_{K}=P_{K+1}=: P_{\infty}, M=0$
DARE (Discretetione Algebraic Riccat $\varepsilon_{a}{ }^{k}$):

$$
P_{\infty}=Q+A^{\top} P_{\infty}^{1 / 2}\left(I+P_{\infty}^{1 / 2} B R^{-1} B^{\top} P_{\infty}^{1 / 2}\right) P_{\infty}^{-1} A
$$

Only makes sense for $L T I$
Proposition (D) (Existence, uniqueness) ditto, ie. $P_{\infty} \succcurlyeq 0$ salves $D A R E$.
(bl) ditto (proof
finite honsizion cate dove in class)

Proposidicizn (when is the
closed -lop stable)
Suppose, $0 \leqslant Q=C C^{\top}$.
Also, let (A, B) controllable (actually, need stabilizable)
and (A, C) observable, then (actually, nesederable)
(i) the optimal closed-loop system $\dot{\dot{x}}=\left(A-B K_{\infty}\right) \underline{x}$

$$
\begin{array}{r}
=\left(A-B R^{-1} B^{\top} P^{\infty}\right) \underline{x} \\
\text { is (asymptotically)stable }
\end{array}
$$

\Leftrightarrow the matrix $(A-B K \infty)$
(ii) $P_{\infty}>0 .\left(\operatorname{Re}\left(\lambda_{i}\right)<0\right)$

Proposition (inter is the closed-loop stable)
Suppose $0 \leqslant Q=C C^{\top}$.
Suppose (A, B) controllable and (A, C) observable,
Then $K_{\infty}=\left(R+B^{\top} P_{\infty} B\right)^{-1} B^{\top} P_{\infty} A$
makes the closed -loop system stable

$$
x_{k+r}^{n}=\left(A-B K_{00}\right) \underline{x}_{k} \text { is (aunt.) }
$$

stable II
The matrix $\left(A-B K_{\infty}\right)$ is Sehur-Cokn stable
$\left(\max _{i}\left|\lambda_{i}\right|<1\right)$

Proof of Proposition (c 3) (() :
Let $A_{c e}:=\left(A-B R^{-1} B^{\top} P_{\infty}\right)$, and $Q=C C^{\top}$

Recall, $x \in \mathbb{R}^{n}, \underline{\underline{u} \in \mathbb{R}^{n}}$
Now by CARE, we have:
$A_{c l}^{\top} P_{\infty}+P_{\infty} A_{c l}=-P_{\infty} B R^{-1} B^{\top} P_{\infty}-C^{\top}$
Let $A_{\text {cl }} \underline{w}=\lambda \underline{w}, \underline{w} \neq 0$.
we would like to investigate under what condition, $\lambda \in \mathbb{C}^{-}$

This is alloys possible since Qto By spectral decompose:

$$
\begin{aligned}
Q & =U D V^{-1} \\
& =V D U^{\top} \\
& =V D^{1 / 2} D^{1 / 2} V^{\top} \\
\Rightarrow C & \left.=V D^{1 / 2}\right)
\end{aligned}
$$

(open left half plane)
oolvich is equivalent to closed-loop stability.
Lot $\left(\lambda^{*}, w^{*}\right)$ be the complex conjugate pair for $(\lambda, \underline{\omega})$
Pre-multiplying the above boxed eave. by w^{*}, and post - multiplying the same by w, yields:

$$
\left(\lambda+\lambda^{*}\right) \underline{w}^{*} P_{o} \underline{w}=-\underline{w}^{n} C C^{\top} \underline{w}-\underline{w}^{*} P_{\infty} B R^{-1} B^{\top} P_{\infty} \underline{0}
$$

Since the RHS of the last eat is the negative of a pos semiby. quadratic form, hence RHS $\leqslant 0$.
On flueLHs, $\underline{w}^{*} P_{\infty} \underline{w} \geqslant 0$ since $\left.P_{\infty}\right\rangle 0$.
Therefore, the only way $C H S=$ RHS can happen is that $\left(\lambda+\lambda^{*}\right) \leqslant 0$.
Howere, if $\lambda+\lambda^{*}=0$, then we get

$$
0=-\underline{w^{*}} C C^{\top} \underline{w}-\underline{w}^{*} P_{\infty} B R^{-1} B^{\top} p_{0} \frac{0}{}
$$

Since the RHS above is sum of two areadratics, hence $\lambda+\lambda^{x}=0$ mandates

$$
\begin{aligned}
& C^{\top} \underline{w}=\underline{0}_{n \times 1} \text { and } R^{-1 / 2} B^{\top} P_{\infty} \underline{w}=0_{\downarrow}{\underset{m}{x 1}}^{x_{1}} \\
& \Downarrow\left(\because A_{c e}:=A-B R^{-1} B^{\top} P_{b}\right) \\
& A_{\underline{w}}=A_{\text {ce }} \underline{w}=\lambda \underline{w} \\
& \Leftrightarrow \quad C^{\top} \underline{w}=0_{n \times 1} \text { and } A \underline{w}=\lambda \underline{w}
\end{aligned}
$$

Recall from linear systems theory that (A, C) detectable $\Longleftrightarrow A \underline{w}=\lambda \underline{w}, C^{\top} w=0, \underline{w} \neq 0$ implies $\operatorname{Re}(\lambda)<0$.
However., $\operatorname{Re}(\lambda)=\frac{\lambda+\lambda^{*}}{2}=0$ inthis case, which is a contradiction? Therefore, we cannot have $\lambda+\lambda^{*}=0$.
At this point, we know that $\lambda+\lambda^{*} \leqslant 0$ and that $\lambda+\lambda^{*} \neq 0$.

$$
\therefore \lambda+\lambda^{*}<0 \Leftrightarrow \operatorname{Re}(\lambda)<0 .
$$

齿
Acl is Hurwitz.
This proof is from
Anderson More, Optimal Control: Linear (2)uctratic Methods, eh 3.2

Stabilizable (in continuous-time) Since Background info亦
Given (A, B), there exist some matrix K, st. $(A-B K)$ is fiuroitz, ie. Re $\left(\lambda_{i}(A-B K)\right)<0 \forall i$.
uncontrollable subspace is naturally stable (look up Kalian decomposition)
Theorem The pair (A, B) is

- Controllable iff $\operatorname{rank}[(\lambda I-A) \mid B]=n$ $\forall \lambda \in \mathbb{C}$
- stabilizable ff $\operatorname{rank}[(I-A) \mid B]=x$

Here A is $n \times n$

Her

$$
B \text { is } n \times m, m \neq n \text {. }
$$

MATLAB command to compete LQR infinite horizon (Computing P_{∞})
\rightarrow sys. A (will print the A matrix)
(You could create "sss" as disenete time system by parking extra argument (T_{s} : sampling time $), e . g$. sys $=s s\left(A, B, C, D, T_{s}\right)$

Handling Additional
Constraints in the OCP (continuous) time)
(71) Integral/Isopenimetric constraints:
$\int_{0}^{T} N(\underline{x}, \underline{u}, t) d t$ must be conserved.

$$
\underline{x} \in \mathbb{R}^{n}
$$

(ie.) $\quad \int_{0}^{T} N(\underline{x}, \underline{u}, t) d t=\underset{\sim}{\mathcal{N}}$ given
To handle this: introduce extra state x_{n+1}
st. $\dot{x}_{n+1}=N(\underline{x}, \underline{u}, t)$
and $x_{n+1}(0)=0, x_{n+1}(T)=(\mathbb{K}$ (given)
Now apply necessamy conditions to tramiltonian:

$$
H=L+\frac{\lambda^{\top}}{x_{1}} f_{n+1}+\lambda_{n+1}(t) N
$$

In particular, $\lambda_{n+1}^{\prime}=-\frac{\partial H}{\partial x_{n+1}}=0 \Leftrightarrow \lambda_{n+1}=$ constant
(72 Control Equality constraint:

$$
C(\underline{u}, t)=0, \quad \underline{u} \in \mathbb{R}^{m} \quad m \geqslant 2
$$

scalar function (For $m=1$, this doesnut make
Augment $1{ }^{\top}$ oct to sown
the Hamiltonian: $H=L+\lambda^{\top} f+\mu(t) C$

$$
\frac{D M P}{O=} \frac{\partial H}{\partial \underline{u}}=\frac{\partial L}{\partial \underline{u}}+(\lambda(t))^{T} \frac{\partial f}{\partial \underline{u}}+\mu(t) \frac{\partial C}{\partial \underline{u}}
$$

(\#3) Equality constraints on $f^{-n} s$ of control and state:

$$
\begin{aligned}
C(\underline{x}, \underline{u}, t)=0 & \text { where } \\
& \frac{\partial c}{\partial \underline{u}} \neq 0
\end{aligned}
$$

Again,

$$
\begin{aligned}
& H=L+\lambda^{\top} f+\mu(t) C \\
& \underline{i}=-\frac{\partial H}{\partial \underline{x}}=-\frac{\partial L}{\partial \underline{x}}-\lambda_{t}^{\top} \frac{\partial f}{\partial \underline{x}}-\underline{\mu}(t) \frac{\partial c}{\partial \underline{x}} .
\end{aligned}
$$

(74) Equality constraint on functions of state variables:

$$
\begin{aligned}
& \frac{\text { variables }}{S(\underline{x}, t)=0 \ldots-(*) \text { fordll } t_{\sigma} \leq t \leq T} \\
& \frac{d}{d t} S=\frac{\partial S}{\partial t}+\frac{\partial S}{\partial x} \dot{x} \nmid f(x, u, t)=0 \ldots(* x)
\end{aligned}
$$

Now, (*) may or may not have explicit dependence on \underline{u}.
\rightarrow If if does, them $(* *)$ plays the role of

$$
C(\underline{x}, u, t)=0
$$

as in $\# 3$
However, we must either eliminate one component of \underline{x} in terms of the remaining $(n-r)$ components using $(*)$ add (*) as a B,C,@t a_{0} or $t=T$.
\rightarrow If $(* *)$ still does not have explicit dependence on u, them do $d / d t$ again
$\underset{\text { cheep doing until } u}{\downarrow}$ appears expliatfy
Suppose this happens @ $q^{\text {th }}$ order $\frac{d}{d t}$

In addition, we must elinionate q components of \underline{x} in terms of the remaining $(n-q)$ components using q algebraic ea's.

$$
\left(\begin{array}{l}
s(x, t) \\
s^{(1)}(x, t) \\
s^{(x-1)}(x, t)
\end{array}\right)=\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right)_{(q-1) x}
$$

