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Overview

min
x2S✓Rn

f (x)
?y

min
f2F (Rn)✓C1(Rn)

I(f ) =
R

dom(f ) L (x, f ,rf ) dx

?y

min
u(·)2U ([0,T])✓F ([0,T])

J(u)

subject to ż(t) = f (z(t), u(t), t)
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OPT example: Least squares

OPT template: min
x2S✓Rn

f (x)

In this problem: min
x
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OPT example: two variable LP

OPT template: min
x2S✓Rn

f (x)

In this problem: max✓
x1
x2

◆
2R2

15x1 + 10x2

subject to 1
4x1 + x2  65,

5
4x1 + 1

2x2  90,

x1, x2 � 0

S = {x 2 R2 : Ax  b, x � 0} ⇢ R2

*



OPT example: two variable LP

OPT template: min
x2S✓Rn

f (x)

In this problem: max✓
x1
x2

◆
2R2

15x1 + 10x2

subject to 1
4x1 + x2  65,

5
4x1 + 1

2x2  90,

x1, x2 � 0

S = {x 2 R2 : Ax  b, x � 0} ⇢ R2



CoV example: Shortest planar path

448 14 Calculus of Variations

14.1 The Fundamental Problem of Calculus of Variations

Calculus of variations is a branch of mathematics dealing with the optimization of
physical quantities (such as time, area, or distance). It finds applications in many
diverse fields, such as aeronautics (maximizing the lift of an airplane wing), sporting
equipment design (minimizing air resistance on a bicycle helmet, optimizing the shape
of a ski), mechanical engineering (maximizing the strength of a column, a dam, or an
arch), boat design (optimizing the shape of a boat hull), physics (calculating trajectories
and geodesics in both classical mechanics and general relativity).

We begin with two examples illustrating the types of problems that may be solved
using calculus of variations.

Example 14.1 This example is very simple and we already know the answer. However,
formalizing it will be of help later. The problem consists in finding the shortest path
between two points in the plane, A = (x1, y1) and B = (x2, y2). We already know that
the answer is simply the straight line connecting the two points, but we will go through
this solution using the framework of calculus of variations. Suppose that x1 6= x2 and
that it is possible to write the second coordinate as a function of the first. Then the
path is parameterized by (x, y(x)) for x 2 [x1, x2], where y(x1) = y1 and y(x2) = y2.
The quantity I that we wish to minimize is the length of the path between A and B.
This length depends on the specific trajectory being followed, and is thus a function of
y, I(y). This “function of a function” is called a functional.

Fig. 14.1. A trajectory between the two points A and B.
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CoV example: Shortest planar path

CoV template:
min

f2F (Rn)✓C1(Rn)
I(f ) =

R
dom(f ) L (x, f ,rf ) dx

In this problem:

I(f ) =
Z

x2

x1

q
1 + (f 0)2 dx

dom(f ) = [x1, x2], assuming x1 6= x2

F (R) = {f 2 C
1 (R) : f (x1) = y1, f (x2) = y2}



CoV example: Brachistochrone (1696)450 14 Calculus of Variations

Fig. 14.2. Three candidate profiles for the best half-pipe.

distance) be taken? Should the path covering the shortest distance be taken? Or should
it be something between these two extremes, such as the smooth profile in Figure 14.2?

It is relatively easy to calculate the time taken to travel the two extreme profiles. But
we will show that the best profile is actually a smooth curve between these two extremes.
To this end, we show how to calculate the travel time for a smooth curve described by
(x, y(x)).

Lemma 14.3 We choose our coordinate system such that the y axis is oriented down-
ward and the x axis proceeds from point A to B and we choose a profile described by a
curve y(x), where A = (x1, y(x1)) and B = (x2, y(x2)). We consider the time taken for
a point mass, propelled only by the force of gravity, to travel from point A to point B.
The time is given by the integral

I(y) =
1

p
2g

� x2

x1

�
1 + (y�)2
p

y
dx. (14.2)

Proof. The key to calculating the travel time is the physical principle of conservation of
energy. The total energy E of a point mass is the sum of its kinetic energy (T = 1

2mv2)
and its potential energy (V = �mgy). (Warning: the negative sign in our potential
energy term comes from us using an inverted y axis.) In these equations m is the mass
of the point, v its speed, and g the acceleration due to gravity. The constant g is
approximately g = 9.8 m/s2 on the surface of the Earth. The total energy E = T +V =
1
2mv2

� mgy of the point mass is constant throughout its trip along the curve. If its
speed is zero at A, then E is initially zero, and remains so along the entire trajectory.
Thus the speed of the point mass is related strictly to its height through the equation
E = 0, which simplifies to 1

2mv2 = mgy and finally

v =
�

2gy. (14.3)

The time taken to travel the path is the sum over all the infinitesimally small dx of the
time dt taken to travel the corresponding distance ds. The time is the quotient of the
distance ds divided by its speed at the moment. Thus

•
(x, f(x))

-

minimum If



CoV example: Brachistochrone (1696)

CoV template:
min

f2F (Rn)✓C1(Rn)
I(f ) =

R
dom(f ) L (x, f ,rf ) dx

In this problem:

I(f ) =
Z

x2

x1

s
1 + (f 0)2

f
dx

dom(f ) = [x1, x2], x1 6= x2, y1 > y2

F (R) = {f 2 C
1 (R) : f (x1) = y1, f (x2) = y2}



Optimal shape of Skateboard Ramp



Johann Bernoulli
(Posted problem in 1696)

Jakob Bernoulli Gottfried Leibniz Guillaume de l’hôpital Ehrenfried Tschirnhaus Mr. Anonymous

June 1696 Challenge in Acta Eruditorum Journal

6 Solutions Appeared in May 1697 Issue

“ex unge leonem” — Johann Bernoulli

Galileo Galilei 
(Conjecture in 1638)
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CoV theory: Integral constraints

CoV template:
min

f2F (Rn)✓C1(Rn)
I(f ) =

R
dom(f ) L (x, f ,rf ) dx

subject to
Z

dom(f )
M (x, f ,rf ) dx = k

Euler-Lagrange equation:

∂

∂f

�
L + l>M

�
� r ·

∂

∂rf

�
L + l>M

�
= 0



CoV example: Isoperimetric problem
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CoV example: Isoperimetric problem

CoV template:

min
f2F (Rn)✓C1(Rn)

I(f ) =
R

dom(f ) L (x, f ,rf ) dx

subject to
Z

dom(f )
M (x, f ,rf ) dx = k

In this problem:

minimize I(f ) =
Z +a

�a

f (x) dx, 0 < 2a < `, subject to
Z +a

�a

q
1 + (f 0)2 dx = ` (given), f (�a) = f (a) = 0

④I


