

Development

Finite dimensional 7 decision making (decision variable Optimization (OPT) =scalar vector $\downarrow \leadsto \begin{aligned} & \text { Infinite dimension } \\ & \text { Optime ration }\end{aligned}$
Calculus of Variations (CoV) (Decision $=$ function)

Optimal Control Problem (OCP)
\rightarrow Has Differential earation as Constraint

Development

Optimization (OPT)

Calculus of Variation (GoV) 17 th
Calculus of Variations (CoV) century) 1687,1696 17003 End er:-
Optimal Control Problem (OCP) Laguamey
1950 - 1960s \longrightarrow Soviet unim (Lindrigagi)
US (Richard Bell ind

Overview

$$
\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})
$$

min
$f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
& \text { Overview } \quad f: \mathbb{R}^{h} \mapsto \mathbb{R} \\
& \begin{array}{l}
\text { Decisionn } \\
\text { vacriable }=\underline{x}
\end{array} \min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(x) \quad(\text { Optimization }
\end{aligned}
$$

OPT example: Least squares

$$
\begin{aligned}
& \text { OPT template: } \min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(x) \\
& \text { In this problem: } \min _{x}\|A x-b\|_{2}^{2} \\
& \begin{array}{l}
\text { unconstrained } \\
\text { least sq. } B \equiv \mathbb{R}^{n} \\
\text { Constrained } \\
\text { least sa. } \left.\& \subset \mathbb{R}^{n}\right\}
\end{array}
\end{aligned}
$$

Constrained

OPT example: Least squares

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

$$
\begin{aligned}
& \text { In this problem: } \min _{x}\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2} \\
& \qquad \mathcal{S}=\mathbb{R}^{n}, \quad f(\boldsymbol{x})=\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}
\end{aligned}
$$

OPT example: two variable LP

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

In this problem: $\max 15 x_{1}+10 x_{2}$

$$
\begin{gathered}
\frac{1}{4} x_{1}+x_{2} \leq 65 \\
\frac{5}{4} x_{1}+\frac{1}{2} x_{2} \leq 90 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

OPT example: two variable LP

OPT template: $\min _{x \in \mathcal{S} \subseteq \mathbb{R}^{n}} f(\boldsymbol{x})$

In this problem: $\max _{\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}} 15 x_{1}+10 x_{2}$

$$
\text { subject to } \quad \frac{1}{4} x_{1}+x_{2} \leq 65
$$

$$
\frac{5}{4} x_{1}+\frac{1}{2} x_{2} \leq 90
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
\mathcal{S}=\left\{x \in \mathbb{R}^{2}: A x \leq b, x \geq 0\right\} \subset \mathbb{R}^{2}
$$

GoV example: Shortest planar path

$$
y=f(x) \Rightarrow \frac{d y}{d x}=f^{\prime} \equiv \frac{d f}{d x}
$$

CoV example: Shortest planar path

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}$ $f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

In this problem:

$$
I(f)=\int_{x_{1}}^{x_{2}} \sqrt{1+\left(f^{\prime}\right)^{2}} \mathrm{~d} x
$$

$\operatorname{dom}(f)=\left[x_{1}, x_{2}\right]$, assuming $x_{1} \neq x_{2}$

$$
\mathcal{F}(\mathbb{R})=\left\{f \in C^{1}(\mathbb{R}): f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}\right\}
$$

CoV example: Brachistochrone (1696)
 minimum time

 $\left(x_{1}, y_{1}\right)$

CoV example: Brachistochrone (1696)

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}$

In this problem:

$$
I(f)=\int_{x_{1}}^{x_{2}} \sqrt{\frac{1+\left(f^{\prime}\right)^{2}}{f}} \mathrm{~d} x
$$

$\operatorname{dom}(f)=\left[x_{1}, x_{2}\right], x_{1} \neq x_{2}, y_{1}>y_{2}$

$$
\mathcal{F}(\mathbb{R})=\left\{f \in C^{1}(\mathbb{R}): f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}\right\}
$$

Optimal shape of Skateboard Ramp

June 1696 Challenge in Acta Eruditorum Journal

Johann Bernoulli (Posted problem in 1696)

Galileo Galilei
(Conjecture in 1638)

6 Solutions Appeared in May 1697 Issue

Jakob Bernoulli

Ehrenfried Tschirnhaus

Mr. Anonymous
"ex unge leonem" - Johann Bernoulli

Conditions for optimarity

$O P T$	CoV	OCP
(incontricioed) $\frac{\partial}{\partial x} f=0$ $\left(\begin{array}{r}\text { (onstrained) } \\ K K T \text { } \frac{\partial}{\partial x}\left(f+\lambda^{\top} g\right) \\ \text { conditions }\end{array}\right.$	$?$	$?$
$?$	$?$	

CoV theory: Integral constraints

CoV template:
$\min _{\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} x$ $f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq C^{1}\left(\mathbb{R}^{n}\right)$

$$
I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} \boldsymbol{x}
$$

subject to $\int_{\operatorname{dom}(f)} \boldsymbol{M}(x, f, \nabla f) \mathrm{d} \boldsymbol{x}=\boldsymbol{k}$
Euler-Lagrange equation:

$$
\frac{\partial}{\partial f}\left(L+\lambda^{\top} \boldsymbol{M}\right)-\nabla \cdot \frac{\partial}{\partial \nabla f}\left(L+\lambda^{\top} \boldsymbol{M}\right)=0
$$

CoV example: Isoperimetric problem

CoV example: Isoperimetric problem

CoV template:

$$
\min _{f \in \mathcal{F}\left(\mathbb{R}^{n}\right) \subseteq \mathbb{C}^{1}\left(\mathbb{R}^{n}\right)} I(f)=\int_{\operatorname{dom}(f)} L(x, f, \nabla f) \mathrm{d} x
$$

$$
\text { subject to } \int_{\operatorname{dom}(f)} M(x, f, \nabla f) \mathrm{d} x=k
$$

In this problem:

minimize $I(f)=\int_{-a}^{+a} f(x) \mathrm{d} x, 0<2 a<\ell$, subject to

$$
\int_{-a}^{+a} \sqrt{1+\left(f^{\prime}\right)^{2}} \mathrm{~d} x=\ell \text { (given), } f(-a)=f(a)=0
$$

